An Asymptotic Preserving Scheme for the ES-BGK Model of the Boltzmann Equation

نویسندگان

  • Francis Filbet
  • Shi Jin
چکیده

In this paper, we study a time discrete scheme for the initial value problem of the ES-BGK kinetic equation. Numerically solving these equations are challenging due to the nonlinear stiff collision (source) terms induced by small mean free or relaxation time. We study an implicit-explicit (IMEX) time discretization in which the convection is explicit while the relaxation term is implicit to overcome the stiffness. We first show how the implicit relaxation can be solved explicitly, and then prove asymptotically that this time discretization drives the density distribution toward the local Maxwellian when the mean free time goes to zero while the numerical time step is held fixed. This naturally imposes an asymptotic-preserving scheme in the Euler limit. The scheme so designed does not need any nonlinear iterative solver for the implicit relaxation term. Moreover, it can capture the macroscopic fluid dynamic (Euler) limit even if the small scale determined by the Knudsen number is not numerically resolved. We also show that it is consistent to the compressible Navier-Stokes equations if the viscosity and heat conductivity are numerically resolved. Several numerical examples, in both one and two space dimensions, are used to demonstrate the desired behavior of this scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A BGK-penalization asymptotic-preserving scheme for the multispecies Boltzmann equation

An asymptotic preserving scheme is efficient in solving multiscale problems where both kinetic and hydrodynamic regimes co-exist. In this paper we extend the BGK-penalization based asymptotic preserving scheme, originally introduced by Filbet and Jin for the single species Boltzmann equation, to its multispecies counterpart. For the multispecies Boltzmann equation the new difficulties emerge du...

متن کامل

A BGK-Penalization-Based Asymptotic-Preserving Scheme for the Multispecies Boltzmann Equation

An asymptotic-preserving (AP) scheme is efficient in solving multiscale problems where kinetic and hydrodynamic regimes coexist. In this article, we extend the BGK-penalization-based AP scheme, originally introduced by Filbet and Jin for the single species Boltzmann equation (Filbet and Jin, J Comput Phys 229 (2010) 7625–7648), to its multispecies counterpart. For the multispecies Boltzmann equ...

متن کامل

A Successive Penalty-Based Asymptotic-Preserving Scheme for Kinetic Equations

We propose an asymptotic-preserving (AP) scheme for kinetic equations that is efficient also in the hydrodynamic regimes. This scheme is based on the BGK-penalty method introduced by Filbet-Jin [14], but uses the penalization successively to achieve the desired asymptotic property. This method possesses a stronger AP property than the original method of Filbet-Jin, with the additional feature o...

متن کامل

Efficient asymptotic preserving deterministic methods for the Boltzmann equation

1 The Boltzmann equation 6 1.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Physical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Fluid limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Other collis...

متن کامل

An asymptotic-preserving scheme for the semiconductor Boltzmann equation toward the energy-transport limit

We design an asymptotic-preserving scheme for the semiconductor Boltzmann equation which leads to an energy-transport system for electron mass and internal energy as mean free path goes to zero. To overcome the stiffness induced by the convection terms, we adopt an even-odd decomposition to formulate the equation into a diffusive relaxation system. New difficulty arises in the two-scale stiff c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2011